유투브에 마코브 체인에 대해서 직관적으로 아주 쉽게 설명한 영상이 있어서 공유합니다. 

저자의 홈페이지 : http://studentdavestutorials.weebly.com/























A Markov model is given visual representation with a state diagram, such as the one below.

State Diagram for a Markov Model

The rectangles in the diagram represent the possible states of the process you are trying to model, and the arrows represent transitions between states. The label on each arrow represents the probability of that transition. At each step of the process, the model may generate an output, or emission, depending on which state it is in, and then make a transition to another state. An important characteristic of Markov models is that the next state depends only on the current state, and not on the history of transitions that lead to the current state.

For example, for a sequence of coin tosses the two states are heads and tails. The most recent coin toss determines the current state of the model and each subsequent toss determines the transition to the next state. If the coin is fair, the transition probabilities are all 1/2. The emission might simply be the current state. In more complicated models, random processes at each state will generate emissions. You could, for example, roll a die to determine the emission at any step.

Markov chains are mathematical descriptions of Markov models with a discrete set of states. Markov chains are characterized by:

  • A set of states {1, 2, ..., M}

  • An M-by-M transition matrix T whose i,j entry is the probability of a transition from state i to state j. The sum of the entries in each row of T must be 1, because this is the sum of the probabilities of making a transition from a given state to each of the other states.

  • A set of possible outputs, or emissions, {s1s2, ... , sN}. By default, the set of emissions is {1, 2, ... , N}, where N is the number of possible emissions, but you can choose a different set of numbers or symbols.

  • An M-by-N emission matrix E whose i,k entry gives the probability of emitting symbol sk given that the model is in state i.

Markov chains begin in an initial state i0 at step 0. The chain then transitions to state i1 with probability T1i1, and emits an output sk1 with probability Ei1k1. Consequently, the probability of observing the sequence of states i1i2...ir and the sequence of emissions sk1sk2...skr in the first r steps, is

T1i1Ei1k1Ti1i2Ei2k2...Tir1irEirk





Poisson Processes (Oxford Studies in Probability) J.F.C kingman




http://bookzz.org/book/1101923/2628fe

http://www.math.uni.wroc.pl/~pms/files/26.1/Article/26.1.5.pdf




The Poisson process is one of the most important random processes in probability theory. It is widely used to model random "points" in time and space, such as the times of radioactive emissions, the arrival times of customers at a service center, and the positions of flaws in a piece of material. Several important probability distributions arise naturally from the Poisson process--the Poisson distribution, the exponential distribution, and the gamma distribution. The process has a beautiful mathematical structure, and is used as a foundation for building a number of other, more complicated random processes.




This is not a class material for commercial purpose. It's free for student.* 


본 포스팅은 Pure Aloha를 먼저설명하고, Slotted Aloha를 유도한다.



1. ALOHA란?


Random access method의 한 방법으로 1970년대에 제안되었으며 여전히 셀룰러 시스템에서 그 Simplicity를 장점으로 사용된다. assumption


알로하(ALOHA)는 하와이 대학에서 개발되었으며 시분할 다중접속 기술을 사용해 위성과 지구 사이의 무선 전송을 하는 프로토콜이다. 원래의 알로하에서 사용자는 언제든지 전송할 수 있지만, 다른 사용자들의 메시지는 충돌할 위험이 있다. 패킷이 준비되면 브로드캐스트되며, 만약 충돌이 일어나면 일정시간 후에 재전송된다. Slotted Aloha는 채널을 시간대별로 나누어서 충돌 위험을 줄이는 것으로, 각 사용자는 시간대의 시작에서만 전송이 가능하다.


2. Basic working


- 노드는 데이터 전송을 언제든지 할수있고 ACK를 받는다

- 만약 하나의 Frame 이상이 같은 시간에 전송된다면, 그들은 서로 간섭을 겪기때문에 충돌하거나 패킷을 잃어버린다. 

   (Collision or Lost)

- 만약 ACK 패킷이 지정된 시간안에 도착하지 않으면 Timeout이 발생하고 전송을 한 노도는 Backoff time만큼 기다린후 

   다시 전송을 시도한다. 


2-2. Vulnerable period


- Frame의 길이 (전송할 패킷의 사이즈)를 L이라고 둔다면, L 길이 패킷을 전송하는 소요시간은 X = L/R (data rate)이 됨.

consider a frame with starting transmission time to the frame will be successfully transmitted if no other frame 

   collides with it.

     -> any transmission that begins in interval [t0, t0+X], or in the prior X seconds leads to collision

    vulnerable period = [ t0 – X, t0+ X ]


위의 그림은 Unslotted Aloha의 취약구간을 보여준다. L길이 만큼의 패킷이 전송될 동안 앞뒤로 2L길이만큼 다른 노드들의 전송시도가 없어야만 성공적인 전송이 가능하다.



3. Throughput =(def. Number of packets per unit time)


1) Successful throughput : X시간(unit time) 동안의 성공적인 Frame 전송의 평균값을 의미한다.


2) G-load : X시간 동안의 평균적인 전송시도를 의미한다. 

(큰 개념은 굵은 제목들만 봐도 충분히 이해가 된다. 하지만 이를 직접 Code로 구현하기 위해서는 아래의 확률과정에 대해서 충분히 이해해야 한다. G의 개념과 Qa, Qr의 개념만 안다면 코딩가능하다. 필요없는 분은 바로 3)으로 가세요)


"G" refer to the mean used in the Poisson distribution over transmission-attempts that is, on average, there are G transmission-attempts per frame-time in state n.

State (n) of system is number of backlogged nodes.

G(n) = λ + n*Qr

( Qr : re-transmission probability of backlogged stations. ) 


The number of attempted packets per slot in state n is approximately a Poisson random variable of mean g(n)

– P (m attempts) = {(G(n)^k)*exp^-G(n)}/m!

– P (idle) = probability of no attempts in a slot = exp^-G(n)

– p (success) = probability of one attempt in a slot = G(n)*exp^-G(n)

    : idel한 채널상태에서 혼자서 전송을 시도하는 경우 = 성공확률.

– P (collision) = P (two or more attempts) = 1 - P(idle) - P(success)


For any frame-time, the probability of there being k transmission-attempts during that frame-time is: 

{(G^k)*e^(-G)} / k!

If throughput is represented by S, under all load, S = G*Ps, where Ps is the probability that the frame does not suffer collision. A frame does not have collision if no frame are send during the frame time. Thus, in t time Ps=exp^-G.

In pure Aloha, Ps=exp^(-2G), as mean number of frames generated in 2t is 2G. From the above, throughput in pure Aloha S = G*exp^-2G.

*혼잣말: G= a node transmission-attempts , k= k nodes라면.. 2)과 3)의 설명에서 G와 k의 연결고리가 없는 느낌인데..


3) Successful  Probability (Ps): 성공적인 Frame전송의 확률


따라서 Successful throughput = Ps * G-load.가 된다.


if general, if frame arrivals are equally likely at any instant in time, and arrivals occur at an average rate of λ [arrivals per sec]

포아송 프로세스를 따라서 동일 프레임들K개가 T시간동안에 도착한다고 가정한다면, 위의 식으로 표현된다.


in our case, λ=G/X [arrivals per second] and T=2X, hence

그러나 앞서 이야기했듯이 Pure Aloha는 프레임길이의 2배동안 다른 노드들의 프레임전송이 없어야 충돌이 없기 때문에 전송이 성공하기 위한 조건들을 대입하면 아래와 같이 다시 쓸수가 있다. 



accordingly, probability of successful transmission (no collision) is:

이를 푸아송 프로세스의 성질을 이용하여, 어떠한 전송이 없을 확률을 구하면 = 다른 노드들이 모두 전송하지 않을 확률 = 성공확률을 의미한다. 

따라서 Throughput 은 평균적인 전송시도량 * 패킷전송 성공확률로 표현이 된다. 


4. Slotted Aloha

Slotted Aloha는 pure Aloha보다 향상된 성능을 가지는데, 이는 충돌량이 감소했기 때문이다. 

1) Assumption

   - 각각의 슬롯사이즈들은 X=L/R 의 크기로 나눠어 진다. (하나의 프레임전송에 맞는 시간)

   - 노드들은 전송을 슬롯의 시작부분에만 시작한다.

   - 노드들은 동기화를 통해서 슬롯의 시작을  알고있다고 가정한다.      

2) Operation

   (1) when node has a fresh frame to send, it waits until next frame slot and transmits

   (2) if there is a collision, node retransmits the frame after a backoff-time

        (backoff-time = multiples of time-frames)



위의 그림을 보면 왜 Slotted Aloha가 더 좋은 성능을 가지는지 알수있다. 사실 직관적으로 2배정도의 성능을 보일것이라고 생각이 든다.


3) Throughput

packet P will be transmitted successfully if no other packet becomes available for transmission during the same time slot. Pure Aloha에서 전송시 Vulnerable period가 패킷사이즈(L)의 2배시간동안 다른 노드들의 전송이 있다면 충돌이 발생한다고 했다면, Slotted Aloha의 경우는 Packet Size의 길이만큼만 충돌이 없도록 보장이 되기에 2배의 성능을 보인다.


vulnerable period = [ t0 – X, t0 ]




따라서, Slotted ALOHA와  Pure Aloha 의 성능을 비교해보면 아래와 같다. 





Slotted ALOHA의 MAX Throughput 은 G=1일때 0.36을 보인다. 

따라서 실질적인 Channel capacity는 36%이다.  
(legend가 반대로 들어갔습니다. 붉은색 = pure, 파란색이 slotted 입니다. 참고하시길 바랍니다.)




Q. What's the Backlogged packets?


A: 

it's a packet stuck in a buffer, unsent to the recipient because of network congestion. You probably don't see the word much in computer networking because it is used in cellular phone networks. In voice networks, where delivery is time sensitive but dropped packets can be tolerated, a backlogged packet is usually dropped.


네트워크분야에서는, 네트워크의 혼잡으로 (CSMA/CA에서 예를들면, 채널이 busy하거나, 패킷간 충돌이 발생했을때) 인하여 전송하려고 하던 패킷을 버퍼에 넣어두고 기다릴 때 전송지연되는 패킷을 말한다.


ex)

In slotted Aloha, If a transmission has a collision, the node become backlogged. 


Ways to increase Wi-Fi performance. Part One: Bursting, Compression, 

Fast Frames, Concatenation
Read more at http://ixbtlabs.com/articles2/comm/tech-80211g-super.html#8G5M62mYj7e8urzI.99

 

 

Practically all presently manufactured 802.11g wireless adapters have such suffixes as "super G", "turbo", "plus", etc. But suffixes are only half the work. Manufacturers (to be more exact, their marketing specialists) decorate their boxes with the 108 Mbit/s or even 125 Mbit/s labels.

125 - sounds tempting. Can it really be true that wireless adapters work faster than the good old Fast Ethernet with its cables? Maybe we should let them go... those "ancient" Fast Ethernet adapters? Get rid of cables, we are sick and tired of, and long live Radio Ethernet? :)

But look before you leap, as the proverb runs. In our case it means that it would do no hurt to find out more details about these mysterious techniques, how they work, and what data rates they really provide (and the most important thing - under what conditions). In other words, we should make allowance for the most important thing to marketing guys - to sell solutions from their company.

There are many ways "to overclock" the standard 802.11g. To be more exact, every chip manufacturer has its own way (at least - they are called differently). Unfortunately, not all manufacturers explain the details of their techniques. I managed to find information on these techniques only for Atheros and Texas Instruments. But the most informative resource is provided by Atheros - it even has a separate web site, devoted to their Super G and Super AG techniques.

In fact, most part of this article is a compilation of the information from the web sites of Atheros and Texas Instruments and only minute details from other sources.

 

Let's proceed to the techniques.

At first let's have a look at the "pure" 802.11g. Maximum throughput of this mode is 54 Mbit/s. I guess the majority of users know how to convert megabits into megabytes? That's right, you should divide megabits by eight to get the data rate - 6.75 MB/s.

But attentive readers (those who don't just look through introductions and conclusions, but actually browse diagrams with performance readings) know that the regular 802.11g mode does not provide more than ~25 Mbit. Hey, that's only half of the 54 Mbit! Where is the other half? "Where" is a topic in its own right. I can only note that, indeed, user data makes for only half (at best) of the channel bandwidth.

That's the first bad news. There is also the second bad news. Radio waves (it's actually them who transmit data in wireless networks) are transmitted in all directions from the signal source (it's a general case). That is everyone hears the transmitter. Everyone can choose to receive data or not, that's not important. What's important - these people cannot transmit anything on the same frequency at that moment. To be more exact, they can try, but signals from both sources will overlap, which will lead to the distortion and loss of the data. In other words, only one of several sources operating at the same frequency can transmit data at a time in wireless networks. That is the walkie-talkie principle - first you talk, then you keep silence and listen.

Thus, the generously allocated ~25 Mbit are divided between all participants of a wireless network. If the number of clients is 5 hosts and all of them are actively transmitting data, every participant will have the bandwidth of about 5 Mbit (in fact, it will be even a tad lower).

There is also the third bad news. The second bad news about 5 Mbit per each of 5 hosts is true only in case of Ad Hoc network, that is without an access point. If we take a more general case with an access point, those miserable 5 Mbit will have to be divided into two. Any exchange with clients in the Infrastructure mode (with an access point) goes via an access point. At first it should receive data and then retranslate it to the recipient. As a result, we get 2 and a little more megabit per user.

Now let's get back to the figures 108 and 125, which are often printed in large font on product boxes. But you have already got it, right? :)

Divide these figures by two (we'll touch upon the ideal case later). That means 60 Mbit maximum in case of one client and consequently n-times smaller in case of N clients.

If all you want is to find out whether it's time to get rid of wires or "wait a little", you may skip the rest of the article. The answer is it's too early so far. At least wait for WiMAX.

Now let's proceed to a more thorough examination of techniques for increasing wireless throughput compared to the standard 802.11g mode.

I guess all advantages (turbo, etc) of the manufacturers are just the same thing as in TI and Atheros, but under different names. But implementation details may be different, so techniques from different manufacturers may be incompatible with each other.

Atheros technique for 802.11g is called Super G (there is another one - Super AG; it's the same thing, but for 802.11a, i.e. for 5 GHz networks). Atheros Super G allows to increase the throughput to 108 Mbit/s. As Atheros honestly declares, user's data rate may reach 60 Mbit.


Performance is increased by several methods:

Atheros Super G / Super AG techniques:

Feature

Characteristics

Benefits

Bursting

  • more data frames per given period of time
  • increase throughput via overhead reduction

Compression

  • real-time hardware data compression
  • Lempel Ziv compression
  • increased data throughput using precompressed frames
  • no impact on host processor

Fast Frames

  • utilizes frame aggregation (frame size is up to 3000 bytes) and timing modifications
  • increases throughput by transmitting more data per frame and removing interframe pauses

Dynamic Turbo

  • similar to trunking techniques used in Fast Ethernet networks, utilizes dual channels to "double" transmission rates
  • analyzes environment and adjusts bandwidth utilization accordingly
  • maximizes bandwidth using multiple (two) channels

 

Atheros web site contains a colorful diagram that shows the influence of various techniques on data transfer rates:

 




Pic.1, Benefits of various techniques for wireless performance

The base 802.11g or 802.11a mode, where all extended techniques are disabled, allows up to 22 Mbit (net value, that is available to a user). Adding techniques, which will probably be included into the future 802.11e standard (Bursting, Fast Frames, Compression), we can increase the performance up to 40 Mbit inclusive. Activating Dynamic Turbo mode, that is utilizing dual channels for data transfers, may increase performance to the theoretical maximum of 60 Mbit.

The above figures are certainly the maximum possible performance in a given mode (in the ideal case). In reality everything will depend on such conditions as client's distance from an access point, a number of clients operating simultaneously, radio environment around the wireless network, etc.

 

Wireless performance boosts from Texas Instruments are called G-Plus. Some of them resemble techniques from Atheros, the others are characteristic of TI alone.

Texas Instruments G-Plus techniques:

 

Feature

Characteristics

Benefit

Frame Concatenation

  • merging data from several packets into one (packet size - up to 4000 bytes)
  • increases throughput by removing overheads from "extra" frames and interframe latencies

Packet Bursting

  • similar to the technique from Atheros
  • similar to the technique from Atheros

 

Let's dwell on each of the above mentioned techniques - bursting, compression, fast frames, dynamic turbo. Interestingly, all the four techniques work independently, thus maximizing performance simultaneously in several ways.

1. Bursting

Frame Bursting is a transmission technique supported by the draft 802.11e QoS specification. Frame Bursting increases the throughput of any (point-to-point) 802.11a, b or g link by reducing the overhead associated with the wireless transmission. This results in the ability to support higher data throughput in both homogeneous and mixed networks.

Picture 2 shows an example of a standard transmission (without bursting).

 




Pic.2, Standard 802.11a/b/g mode

In standard mode we can see the process of transmitting two frames (frame1 and frame2) from Source to Destination in time. The process of data transmission is divided into time intervals (axis X is time). As only one source can transmit data at a time, each station should contend for airtime during DIFS (Distributed InterFrame Space). If no other station is transmitting, the airtime is free and a frame can be transmitted. After a frame is transmitted (frame1), the transmitter waits for a confirmation on a successful delivery from the destination. The destination must send an acknowledgement (ack) practically immediately after SIFS - Short InterFrame Space (if there was no acknowledgement, the source considers that the frame was not received and must resend it). After receiving an acknowledgement, the sender must again wait for DIFS and only then (if the air is still free) start sending Frame 2. And so on.

Thus, DIFS take up a considerable part of wireless throughput.

Now let's see the picture of Frame Bursting transfer:

 




Pic.3, With Frame Bursting

 

In this mode (Picture 3), the source and the destination capture a channel in turns for their transmissions. After frame1 is transmitted and the acknowledgement is received, the transmitter does not wait the required DIFS. The sender waits only SIFS and then transmits the second data frame, etc. Thus, the sender does not give an opportunity for other stations to start transmissions - they have to wait for the end of this burst transmission.

Of course, the total transmission time in this mode is limited (otherwise, transmission of several gigabytes would have paralyzed other clients of a given wireless network completely). But eliminating DIFS allows a larger chunk of data transmitted over the same period of time, thus saving the channel throughput, that is increasing the total transmission performance.

Atheros announces that all its products support this technique. But devices from other manufacturers, which do not support this technique, may fail to understand this burst mode. So, if communicating with a product that fails to acknowledge a burst transmission, the source falls back to the base mode.

Implementation of Bursting from TI is similar to Atheros. TI provides the following illustration of its technique (Picture 4):

 




Pic.4, Frame Bursting from Texas Instruments

TI also eliminates the "long" interframe space, by reducing overheads on transmission.

Both companies do not provide information on compatibility of burst techniques from TI and Atheros.

 

Similar "bursting" techniques are probably offered by other manufacturers as well. But Atheros went further than that and expanded this technique to "dynamic bursting". It announces that this technique is especially effective in networks with the number of wireless clients exceeding one.

For example, if there are two stations, near and far from an access point. Of course, the far station will operate with an access point at a lower data rate (because of the distance). That's why its transmission (to the near client) of a given size will take more time than it will take the near client to receive the data. In this case bursting activation for the far station allows to reduce the airtime and, strange as it may seem, it also allows the nearby station to receive this data still faster (since it will spend less time contending for airtime). Burst transmission periods also depend on the distance (to be more exact, on data rates). The nearby client is granted a longer burst transmission, as it will burst more frames, while consuming much less airtime.

 

Atheros Compression technique

The second technique from Atheros that extends the 802.11 standard is hardware compression. It's built into all 802.11a,b,g chipsets from this company. It uses the Lempel Ziv algorithm. The same algorithm is used in such archivers as gzip, pkzip, winzip. This engine compresses prior to transmission and decompresses after reception.

Unfortunately, the data is not analyzed before it's compressed, all frames are compressed. Thus, it's not always good - for example, sending an already compressed file may increase the size of wireless transmission.

On the other hand, well compressible data will be transmitted in smaller frames, thus consuming less airtime. This airtime can be used by other wireless stations.

 

Atheros Fast Frames

Fast Frames technique bundles two frames into a single larger frame. Thus we eliminate extra overheads (in the header of the second packet - there is only one header in the new packet left) and interframe spaces:

 




Pic.5, Regular Transmission

 




Pic.6, with Fast Frames

The size of the resulting frame may reach 3000 bytes, which is twice as large as the maximum frame size of a standard ethernet packet. Thus, Fast Frames technique will work even with wireline transmissions with maximum packet size (1500 bytes), by merging each two ethernet packets into a single larger packet. Once FastFrames have been negotiated between an access point and a station, both the AP and the station can send wireless frames of 3000 bytes to the corresponding peer.

Considering that Fast Frames can operate together with Frame Bursting, we get very good data rates. By the way, according to Atheros, most manufacturers, using Frame Bursting in their chips, actually don't support Fast Frames. Atheros is all right - their devices support both techniques.

The Fast Frames technique is also based on the 802.11e draft standard. Nevertheless, it may not be supported by all third party hardware. On the other hand, this technique functions within existing timing parameters (unlike Frame Bursting, which exclusively captures a channel for some time). That's the reason Fast Frames are better for wireless networks that use equipment from various manufacturers.

 

Texas Instruments Frame Concatenation

The Frame Concatenation technique in devices from Texas Instruments uses the same principles as Fast Frames from Atheros.

TI goes further than that. In this case two or more frames are merged (Picture 7):

 




Pic.7, Frame Concatenation

Thus, it gains by eliminating overheads and interframe spaces from one or more frames. TI claims that its Frame Concatenation technique will work with any 802.11b/b+/g devices from TI and (!)other manufacturers. It's not quite clear what this company meant by other manufacturers, if the latter don't support this technique... Perhaps it meant operations with frames that don't exceed the standard size (1500 bytes).

Frame Concatenation incorporates an algorithm that allows to merge only selected packets into mega-frames. For example, if there is only one frame in queue to be sent to a given destination, it will be sent immediately. In other words, only frames to the same destination address (MAC address of a receiver, in this case) will be merged. The algorithm works only with unicast packets - multicast packets as well as control packets are sent without changes.

At present, the maximum size of a Concatenation packet may reach 4096 bytes (which is an indirect sign that this technique is not compatible with its Atheros counterpart).

Conclusion

As we can see, manufacturers are not waiting for the official announcement of the standards (802.11e in this case), but integrate these new techniques into their products. Thus, they obtain good results as far as performance gains are concerned, on the one hand. But on the other hand, techniques from different manufacturers are often incompatible with each other.

We haven't reviewed Dynamic Turbo from Atheros yet. It will be described in the second part of the article.

If we find documentation about such techniques as super/plus/etc from other manufacturers of wireless solutions (or if you post links to such documents in our forum (the link to our forum is right after this article, a tad below)), reviews of these techniques will also be added to the second part of the article.

 

Evgeny Zaitsev (eightn@ixbt.com.)
July 1, 2005.



Write a comment below. No registration needed!


Read more at http://ixbtlabs.com/articles2/comm/tech-80211g-super.html#8G5M62mYj7e8urzI.99



결론: Wi-Fi에서 Burst mode를 사용하는 모듈(Atheros,TI..)을 구매하여 사용해야 하며,  이는 Burst mode 모듈이 Backoff를 수행하지 않고 SIFS만큼만 대기후 연속적으로 데이터를 전송하기 때문에, 다른 기기들의 채널접근을 막는다. 따라서, 단기간만 Throughput을 올리는 목적으로 사용해야한다. 

'N.&C. > Principle of Communication' 카테고리의 다른 글

[Tutorial] Channel Models : A tutorial  (0) 2013.10.08

What is the meaning of the Intended and Offered Load, Forwarding Rate?


I provide explanation of difference between Intended and Offered load and Forwarding Rates:


I note that the Intended load is what is being asked of the test, versus Offered load which is what the actual physical layer can do. Offered load is what should actual be transmitted.

 

The Intended Load is the number of frames per second in which an external source attempts to send to a DUT/SUT for forwarding to a specified output interface(s)."

 

The Offered Load is the number of frames per second that an external source can send to a DUT/SUT for forwarding to a specified output interface(s).

 

Note: 'There may occur an issue where -> Offered Load appears far too much lower than Intended Load.

  

I explain this may be causes when choosing -> Test Parameters -> Improve Time to Test -> Skip to next load when iteration fails.

  

When there is packet loss and because the iteration is configured due to this configuration to abruptly end, the configured rate is not caught by the analyzer.

 

If this is a concern, I recommend to deselect -> Test Parameters -> Improve Time to Test -> Skip to next load when iteration fails and retest in the same manner.'

 

The Forwarding Rate is the number of frames per second that a device can successfully send to the correct destination interface in response to a specified offered load.

 

The throughput is the fastest rate (Offered Load) at which the count of test frames transmitted by the DUT is equal to the number of test frames sent to it by the test equipment.



Site: http://ekb.spirentcom.com/index?page=content&id=FAQ11890&actp=LIST

I sincerely promise that this paper would be used for purely academic purposes only and not for any commercial applications. this copyright belong to original author.  - from blog owner.


This content refer to "Channel Models A tutorial' paper of Raj Jain, jain@acm.org author in Google.

V1.0February 21, 2007

 


Channel Models A tutorial



1. The Basic Concepts



Wireless signal의 특성은 그것이 전파하는 (송수신간의) 매체를 통과하면서 변하게 된다.
이러한 특성은 송,수신 안테나 사이의 거리에 의하여 의존하게 되며, 그 거리에는 신호가 지나가는 경로와 환경(방해가능한 빌딩과 어떠한 물체 -> 이는 신호의 반사 및 흡수가 가능하다.) 적인 요소가 존재하여 채널의 특성을 변화시킨다.


만약 우리가 송수신 안테나사이의 매체 i.e 채널을 알수있다면, 입력신호를 앎으로써, 출력신호를 알수있게 된다.

Therefore, this model of the medium is called channel model.


In general, the power profile of the received signal can be obtained by convolving the power profile of

the transmitted signal with the impulse response of the channel. Convolution in time domain is

equivalent to multiplication in the frequency domain. Therefore, the transmitted signal x, after

propagation through the channel H becomes y


y(f)=H(f)x(f)+n(f)


일단, 송신신호와 수신신호와의 상관관계를 통하여 채널 추정이 가능하다.
위의 식에서 H(f)는 우리는 Chaneel responce라고 부를것이며, n(f)는 노이즈성분이다.

Note that x, y, H, and n are all functions of the signal frequency f.

The three key components of the channel response are path loss, shadowing, and multipath as explained below.


따라서, 우리는 채널에 영향을 주는 대략적인 3가지의 성분 path loss, shadowing, and multipath 를 통하여서, 채널을 추정할수가 있게 된다.


2.1 Path Loss


The simplest channel is the free space line of sight channel with no objects between the receiver and the transmitter or around the path between them. In this simple case, the transmitted signal attenuates since the energy is spread spherically around the transmitting antenna. For this line of sight (LOS) channel, the received power is given by:


먼저, 가장 간단한 형태의 채널을 정의해보자. 이는 자유공간 즉, 벽면도 없고 반사도 없는 그래서 손실도 없는 LOS (direct path propagation) 타입이다. 

감쇠의 원인은 안테나의 전파(신호) 방사형태가 구면의 형태로 에너지를 확산시키기 때문에 P는 D^-2에 비례한다.

Here, Pt is the transmitted power, Gl is the product of the transmit and receive antenna field radiation patterns, λ is the wavelength, and d is the distance. Theoretically, the power falls off in proportion to the square of the distance. In practice, the power falls off more quickly, typically 3rd or 4th power of distance.

G1은 안테나의 방사패턴에 해당하는 Loss를 의미한다.

이론적으로 파워는 거리의 제곱에 비례하여 감소하지만, 사실 실제환경에서는 이보다 빠른 세제곱, 네제곱배로 감소한다.




The presence of ground causes some of the waves to reflect and reach the transmitter. These reflected

waves may sometime have a phase shift of 180 ° and so may reduce the net received power. A simple two-ray approximation for path loss can be shown to be:

자 이제 Free space 시나리오를 좀더 꼬아서 Ground 가 존재한다고 가정한다면, 이는 반사를 야기시킨다. -> 위상을 180도로 변화시키며, Power를 감소시킨다.


Here, ht and hr are the antenna heights of the transmitter and receiver, respectively. 

Note that there are three major differences from the previous formula. First, the antenna heights have effect. Second, the wavelength is absent and third the exponent on the distance is 4. 

이 공식의 앞전의 위의 공식과 3가지의 주요한 다른점이 존재한다.

안테나높이 고려, 파장고려X, 지수부4승.


In general, a common empirical formula for path loss is:

그리고 이를 더욱 일반화한 형태로, 경험에 의한(실험에 의한) 공식은 아래와 같다.

위의 공식은 실제적인 path loss를 고려한 형태의 수신되는 신호의 Power를 의미한다.

Where P0 is the power at a distance 0 d and α is the path loss exponent.

The path loss is given by:

Path Loss 공식은 아래와 같이 dB표현식으로 주어진다



Here PL(d0 ) is the mean path loss in dB at distance 0 d . The thick dotted line in Figure A.1.2 shows the received power as a function of the distance from the transmitter.


If you want to know the more detail information about this section, please refer to Fundamentals Wireless Communication text book's chapter 2. It's free on website. 

http://www.eecs.berkeley.edu/~dtse/book.html



2.2 Shadowing


If there are any objects (such buildings or trees) along the path of the signal, some part of the transmitted signal is lost through absorption, reflection, scattering, and diffraction. This effect is called shadowing. As shown in Figure A.1.3, if the base antenna were a light source, the middlebuilding would cast a shadow on the subscriber antenna. Hence, the name shadowing.


쉐도잉은 송신 신호가 수신단으로 가기까지 어떠한 장애물이 존재하여, 송신신호가 흡수,반사,회절,흩어짐을 겪게 됨으로 소실되거나 딜레이되어 수신단에 도착하게 되는데 이로 인해 다른 크기와 위상의 신호가 중첩되어서, 이를 평균전력그래프로 그려보았을 때, "로그노말분포"로 나타나기에 흔히 우리는 로그노말쉐도잉이라고 부른다.


[보충]

Shadowing은 문자적 뜻은 음영 손실 (Shadowing Loss)을 의미하며, 현상은 전파 장애물 바로 뒤에 전파적인 그림자(음영)가 드리워져 나타나는 전파 손실을 말한다. 예를들면, 송신 전파가 산,빌딩 등 장애물의 불규칙적인 전파 반사면,산란체 등 때문에 수신 전파 전력이 평균을 중심으로 요동치는 현상 이라고 볼 수있다. 






The net path loss becomes:

Here χ is a normally (Gaussian) distributed random variable (in dB) with standard deviation σ . χ represents the effect of shadowing. As a result of shadowing, power received at the points that are at the same distance d from the transmitter may be different and have a log-normal distribution. This phenomenon is referred to as log-normal shadowing.




2.3 Multi-path


The objects located around the path of the wireless signal reflect the signal. Some of these reflected waves are also received at the receiver. Since each of these reflected signals takes a different path, it has a different amplitude and phase. 

반사되는 신호들이 서로 다른 경로를 가지므로, 다른 위상,크기를 가진 신호가 되기에 이를 다중경로 페이딩이라고 부른다.


[보충] : Multi-path Fading

서로 다른 경로를 따라 수신된 전파들이 여러 물체에 의한 다중 반사로 인해 서로다른 진폭,위상,입사각,편파 등이 간섭

(보강간섭,소멸간섭)을 일으켜 불규칙 요동치는 현상

Depending upon the phase, these multiple signals may result in increased or decreased received power at the receiver. Even a slight change in position may result in a significant difference in phases of the signals and so in the total received power. The three components of the channel response are shown clearly in Figure A.1.4. The thick dashed line represents the path loss. The log-normal shadowing changes the total loss to that shown by the thin dashed line. The multipath finally results in variations shown by the solid thick line. Note that signal strength variations due to multipath change at distances in the range of the signal wavelength.

그래서 아래 그림과 같은 형태의 수신 파워를 보인다. 아래의 그래프는 x축 거리가 멀어짐에 따른 y축 수신파워/송신파워의 db비를 나타낸 그래프이다. 이를 통하여 각 채널에 영향을 주는 3가지 성분들로 인하여 입력신호가 어떻게 수신되는지를 대략적으로 알수가 있다. 





Since different paths are of different lengths, a single impulse sent from the transmitter will result in multiple copies being received at different times as shown in Figure A.1.5

아래의 그림은 송신 신호가 수신측에서 Multipath를 겪고서 어떻게 페이딩현상으로 나타나는지를 보여준다.

(즉,LTI System으로 수신신호를 입력신호대 채널간의 컨벌루션으로 모델링한 형태를 떠올리면 이해가 쉽다)




The maximum delay after which the received signal becomes negligible is called maximum delay spread τmax. A large τmax indicates a highly dispersive channel. Often root-mean-square (rms) value of the delay-spread τrms is used instead of the maximum.

송순 후에 multipath fading으로 너무 많은 딜레이와 감쇄효과가 있어서 무시해도 되는 수신신호파워를 우리는 τmax 라고 부른다.



3. Tapped Delay Line Model


One way to represent the impulse response of a multipath channel is by a discrete number of impulses as follows:


Note that the impulse response h varies with time t. The coefficients ci(t) vary with time. There are N coefficients in the above model. The selection of the N and delay values τi depends upon what is considered a significant level. This model represents the channel by a delay line with N taps. For example, the channel shown in Figure A.1.5 can be represented by a 4-tap model as shown in Figure A.1.6.


멀티 패스 채널의 임펄스 응답의 표현은 위의 식처럼, 임펄스들의 이산적인 합으로 표현될수가 있다.


[보충] : 왜 임펄스 함수인가?

흔히 채널은 시스템으로 표현할수가 있다고 한다. 왜냐하면, 입력신호를 어떤 시스템에 넣고 (채널) 출력신호를 보는 과정이 통신의 송/수신과 매우 흡사하며, 이를 수학적으로 모델링하여 나타내면 간단 명료하게 채널의 특성을 보여줄수 있기 때문이다. 임펄스 응답이란? 시스템에 단위 임펄스함수를 인가하였을 때의 출력을 의미하며, 임펄스 응답에 대한 '푸리에변환'은 통신의 주파수 특성 (전달함수 H)와 같다. 그래서 임펄스 응답을 알면 우리는 주어진 입력에 대한 출력을 쉽게 구할수 있기 때문에 우리는 임펄스 함수를 사용하게 되었다.



If the transmitter, receiver, or even the other objects in the channel move, the channel characteristics change. The time for which the channel characteristics can be assumed to be constant is called coherence time. This is a simplistic definition in the sense that exact measurement of coherence time requires using the auto-correlation function.

만약 송/수신기(ex.안테나)가 움직이면 채널의 특성도 변하게 된다. 그래서 우리는 채널이 제한된 특성을 가지고 있는 시간을 하나의 척도로 명명하였는데 이것이 coherence time 이다.

coherence bandwidth 도 이와 매우 유사하다.


For every phenomenon in the time domain, there is a corresponding phenomenon in the frequency domain. If we look at the Fourier transform of the power delay profile, we can obtain the frequency dependence of the channel characteristics. The frequency bandwidth for which the channel characteristics remain similar is called coherence bandwidth. Again, a more strict definition requires determining the auto-correlation of the channel characteristics. The coherence bandwidth is inversely related to the delay spread. The larger the delay spread, less is the coherence bandwidth and the channel is said to become more frequency selective.


delay spread는 LOS와 비교하였을 때, 위의 Figure A.1.6과 같이 지연되어 수신되는 현상을 말한다. 

delay spread가 크다면 coherence bandwidth 은 작으며, 이때 채널을 우리는 frequency selective하다고 말한다.



4. Doppler Spread


The power delay profile gives the statistical power distribution of the channel over time for a signal transmitted for just an instant. Similarly, Doppler power spectrum gives the statistical power distribution of the channel for a signal transmitted at just one frequency f. While the power delay profile is caused by multipath, the Doppler spectrum is caused by motion of the intermediate objects in the channel. The Doppler power spectrum is nonzero for (f-fD, f+fD), where fD is the maximum Doppler spread or Doppler spread.


The coherence time and Doppler spread are inversely related:



coherence time과 Doppler Spread는 서로 역수관계를 가진다.


Thus, if the transmitter, receiver, or the intermediate objects move very fast, the Doppler spread is large and the coherence time is small, i.e., the channel changes fast.

Table A.1.1 lists typical values for the Doppler spread and associated channel coherence time for two WiMAX frequency bands. Note that at high mobility, the channel changes 500 times per second, requiring good channel estimation algorithms


높은 대역으로 Carrier Frequency가 갈수록 Coherence Time은 작으며, Max Doppler Spread가 높을수록 채널의 안정적인 시간 = 주파수가 Flat한 시간이 적다.


여기에선 Coherence Time과 Doppler Spread만을 비교하였으며, Doppler Spread에 대한 자세한 정보가 필요하다면 위에서 소개한 책의 Chapter 2.1.4를 참고하기 바란다.


in this Tutorial, we just handled the comparison with Coherence Time and Doppler Spread. If you want to learn the Doppler Spread, you can easier understand though the textbook which we already introduced.  



**본 논문은 제가 따로 요약 하였기에 저작권법에 접촉되지 않습니다.


(IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, AUGUST 2006)



A Tutorial on Cross-Layer Optimization in Wireless Networks


Xiaojun Lin, Member, IEEE, Ness B. Shroff, Senior Member, IEEE, and R. Srikant, Fellow, IEEE


-Tutorial Paper-



Abstract-

 Tutorial paper 최근의 무선시스템에서의 자원배분 문제 최적화 기법에 대한 발전에 대해서 보여준다.

1)우리는 Cellular networks(single hop)  위한 ‘opportunistic (channel-aware) scheduling’ 영역의 중요한 결과들을 살펴봄으로써 시작했다왜냐하면, Cellular networks 성능 최적화가 많이 필요한 영역이기 때문이다.

우리는 배웠던 중요한 교훈들을 설명하고 2)multi-hop wireless networks에서의 일반적인 자원배분 문제들에 대한 주요한 문제점들에 대해서 이야기  것이다.

그리고 Tutorial 뒷부분에서는 3) loosely coupled” cross-layer solution 안에서의 깔끔하게 최적화문제로 풀어낸

Multi-hop resource allocation problem naturally results 보여  것이다.

 말의 의미는하나의 알고리즘으로써 서로 다른 Protocol stack Layer (예를 들면, MAC/ PHY) 대한 map 얻는 것이기도 하며송수신되는 정보 (왔다갔다하는) 통해서 결합되는 알고리즘을 의미한다.

 알고리즘은 바로매우 복잡한 MAC층에서의 최적화된 스케줄링 구성요소로 취급될 것이고분산되는 간단한

솔루션들이 필요하다그리고 우리는 어떻게 Cross Layer framework에서 불완전한 스케줄링을 사용할 것인지를 시연하고최근에 개발된 분산 알고리즘에 대해서도 알아  것이다그리고 마지막으로 우리는 a set of open research problems 토의함으로써 마칠 것이다.

 


다시 말해서  논문은 아래의 5가지 단계를 따른다.


1) 기회주의적 스케줄링을 살펴봄


2) 멀티  무선네트워크에서의 자원배분 문제를 알아봄


3) 위의 자원배분 문제를 Loosely-coupled  Cross Layer에서 다시 자원배분 문제를 접근함


4) 그리고 어떻게 불완전한 스케줄링 알고리즘을 사용했는지분산 알고리즘은 무엇인지 설명  것이다.


5) 마지막으로 이와 함께 고민할  있는 Open Problems 다룸으로 마친다.








Q. 논문의 이해를 위해서 고민해봐야 하는 내용들

 

-Cross-Layer 의미는?

OSI7 같은 Independent layers 독립적인 rule break 하는 것이다왜냐하면이를 통하여 비약적인 성능의 향상의 결과가 있기 때문이다방법론적으로다른 layers 간의 변수공유와 같은 방법이 존재한다디자인 형태는 6가지가 존재하며,  내부적인 feedback  상호작용은 3가지 형태로 요약이 가능하다.

 

 

분산 알고리즘이란? ‘Distributed Algorithm’

 

A distributed algorithm is an algorithm designed to run on computer hardware constructed from interconnected processors. Distributed algorithms are used in many varied application areas of distributed computing, such as telecommunications, scientific computing, distributed information processing, and real-time process control. Standard problems solved by distributed algorithms include leader election, consensus, distributed search, spanning tree generation, mutual exclusion, and resource allocation.[1]


 

I. INTRODUCTION

 

Optimization-based  접근법은 지금까지 통신 네트워크 영역에서 “Resource allocation problem” 해결을 위해서 광범위하게 연구 되어왔다예를 들면, Internet congestion control 시스템의 성능을 최대한으로 끌어내는 convex optimization problem 으로 distributed primal or dual solutions 자원배분문제를 어떻게 해결하는가  대한 모범적인 예로써 생각할 수가 있다이런 류의 접근법(실험법 TCP(transmission control protocol) 대한 깊은 이해와 향상된 혼잡제어(congestion control) 라는 솔루션을 보여준다.[1-6]

어쨌든 질문의 핵심은 앞서 말한 접근법이 통합된 multi-hop wireless networks에서 *a clean-slate design of the protocol stack으로 적용   있다는 점이다사실Internet setting 에서의 그러한 기술의 직접적인 어플리케이션을 허용하지 않는 무선통신의 맥락에서 있어서  특별한 도전들이 있다특히무선매체는 본질적으로 유저들의 데이터송신에 의한 간섭이 많이 일어나는 다중접속매체로써채널의 capacity time-varying  성격을 보인다이러한 이유로무선매체는 사용자와 네트워크 Layer간의 상호의존성을 띄기 때문에 기존의 유선과는 반대의 성격을 가진다하지만이런 어려움에도 불구하고최근에 통합  최적화된 형태로써의 Multiple layer들의 무선자원을 자유로이 공유하거나 넘나드는(Cross Layer개념진보된 결과들을 보여준다이와 관련된 흥미로운 내용은 섹션3에서 설명한다.

(The solution of such an optimization framework will itself exhibit a layered structure with only a limited degree of cross-layer coupling.)

 

 

*The notion of a clean-slate design becomes especially attractive for multi-hop wireless networks, where the burdens of legacy systems are far less than for the Internet.

*Protocol Stack : 서로 다른 기기들이 데이터 통신을 하는  필요한 통신 규약을 구현해 주는 소프트웨어 모듈들의 모임 기기 간에 통신을   해당 통신 규약을 구현해 주는 핵심 소프트웨어이며프로파일은 상호 접속성을 확보하기 위해 애플리케이션에서 사용해야  통신 규약을 규정한 것이다예를 들어노트북 컴퓨터와 휴대 전화가 통신하기 위해서는 통신 규약이 서로 맞아야 데이터를 교환할  있다통신 규약 스택은 각각의 하드웨어에 탑재되어 통신 규약을 맞추어 구현해 주는 역할을 담당한다대표적인 것으로 TCP/IP 스택이 있으며이는 윈도즈 운영 체계에 포함되어 있다.

 

 

우리는 use of such an optimization approach for two classes of cross-layer problem 분명히 보여  것이다 다시 말해서,

Cellular (or access-point-based single-hop networks)에서 기회주의적 스케줄링 문제점을 보고 시나리오를 발전시켜서 multi-hop wireless networks에서의 혼잡제어와 스케줄링 문제를 살펴볼 것이다.

그리고 optimization approach 해결하기 위한 중요한 도구로 사용되는 convex programming  대해서 알아볼 것이다.

 

특히, convex programming에서 Lagrange duality 복잡한 최적화 문제를 간단한 여러 가지 문제로써 분해하는 중요한 핵심 도구이다하지만우리는 종종 우리는 이것만으로 문제를 100% 해결하는 것에는 부족하단 것을 안다왜냐하면유선 네트워크와는 반대로많은 무선 네트워크에서의 Cross-layer control problems  not convex (볼록않기 때문이다.

예를 든다면무선 네트워크에서의 간섭문제들로 인하여각각의 시간에 대해서 활성화 되어야 하는 링크들의 부분집합들에 대한 선택에 있어서 정확히 선택해야 하는 정교한 스케줄링 mechanisms 요구하는  같은 것이다무선 네트워크에서 링크들의 capacity 신호와 간섭레벨에 의존적이고그러한 것들은 파워와 링크의 전송 스케줄에 의존적이다그래서 link capacity, power assignment, and the transmission schedule 에서의 관계들은 전형적으로 non-convex 하다.

그러므로스케줄링 요소는 어려운 non-convex problem 풀기 위해 필요하고이는 보통 전체 솔루션에서 병목현상을 뛴다.

무선 네트워크에서 이러한 문제들을 내재하는 non-convex 문제들을 해결하기 위해선, convex-programming 적인 진보된 테크닉의 사용이 요구된다.

 

 

 

 tutorial paper에선아래의 6가지 예시들을 집중적으로 살펴  것이다.

1)       Tools from convex programming,

2)       Combinatorial optimization

3)       Stochastic stability

4)       Graph theory

5)       Large deviations

6)       Heavy-traffic limits are used to obtain realistic and efficient solutions to the cross-layer control problem.

 

cross-layer optimization 는 최근 사이에 꽤 큰 이슈로 발전 되었고, 이를 위한 포괄적인 조사는 공간적인 (space constraints) 제한을 가진다. 따라서, 이 paper에선 모두를 다 조사하진 못했다. 오히려, 포커스는 주요한 이슈와 도전들, 그리고 테크닉과 open problem들에 대해서 독자들에게 알려주는 정보전달에 대해서 맞춰져 있다. [7]을 참조하길 바란다.

 

 

 논문의 구성은 아래와 같다.

Section II: cellular networks에서 scheduling 문제점에 대한 설명을 하면서스케줄링 선택에 있어서 물리계층 채널 정보를 결합시키는 점에 대해서 강조한다.

Section III:  we investigate the joint congestion-control and scheduling problem in multi-hop wireless networks.

섹션3 내용은 주로 the cross-layer problem  a congestion control component and a scheduling component 2가지로 깔끔하게 분해하며 접근한다하지만, non-convexity성격 때문에 실제 네트워크에서 스케줄링은 매우 어렵지만 cross-layer solution으로 심플하지만 불완전한 해결법으로 어느 정도 접근해본다.

Section IV: 당연히  부분은 앞으로  보완되고 다듬어져 가야 한다.

Section V: recent developments in obtaining imperfect distributed scheduling policies with provably achievable throughput bounds.

We then conclude with a set of open problems.

 

 

II. OPPORTUNISTIC SCHEDULING FOR CELLULAR WIRELESS NETWORKS

 

오랫동안 multiuser scheduling problem 산업과 학교에서 많은 조명을 받아왔다그리고 multiuser scheduling problem 무선 네트워크에서 독특한 특징으로써 많은 동기부여를 받아왔다. : 자원의 크기, mobile 유저의 간섭문제시변 채널의 조건들(이동성과 페이딩으로 인한)

 

좋은 스케줄링 방법이란높은 네트워크 성능을 만족시키는 채널 컨디션을 기회주의적 형태로 분석 활용하는 것을 의미한다.

예를 들면, N명이 이용자들과 베이스 컨디션으로 구성된 cellular networks 고려하는 것이다.

게다가가정해보자.  유저들의 base station 으로부터의 타임슬롯시스템과 다운링크 통신에 대해서 가정해보자.

base station 채널 조건을 기반으로 어느 유저가 전송이 가능한지 결정할 수가 있다 아이디어는 SINR기반의 채널컨디션에 따라서 수신 단으로의 전송을 베이스 스테이션이 주어진 BER 만족시키며 높은 속도로 전송을 허용하는 것을 의미한다이것은 Base Station  기회주의적 기법으로 높은 네트워크 성능유지를 위하여 채널의 조건을 이용한다는 의미이다.

이와는 달리 기존의 전통적인 방법에선채널의 가변성을 제거하는 것이 주된 관심사였다.

 (예를 들면, spread spectrum, repetitive coding, and power averaging)

 

Opportunistic scheduling  대한 설명~ (앞장참고)

 

우리의 초점은 Downlink에서의 base station 전송 시나리오로 한정하며/무한 backlogged cased 위한 Opportunistic scheduling solutions  것이다.

 




A. Infinite-Backlog Case

 

Infinite-Backlog Case 종종 통신시스템 분야에서 프로토콜의 성능평가와 최대의 성능 량을 보기 위하여 사용된다.

이는 매우 심플하고 중요한 이해를 제공하는 다루기 쉬운 평가방법이다 단락의 내용에서의 목적은 실행가능한 스케줄링 정책 Q 찾는것이다. Q 주어진 공정성과 QoS 요구조건을 만족하며전반적으로 시스템 성능이 최대화를 보여주는 스케줄링 정책을 의미한다.

: policy Q Vector. 의미한다.

 : The index of the user selected for transmission : 전송을 위한 선택되는 유저의 인덱스

 : The data rate transmitted to user ; 사용자에게 전송되는 통신속도

Ui : the utility function of user , ; 유저의 이용률 함수

: measures the value or benefit to user i of the receiving data rate xi. ; i번째 유저의 수신속도 xi 이익 또는 값의 측정값

(Note that xi is a function of the channel condition and the coding and modulation scheme used.)

 

There have been many scheduling schemes that address this problem [9]–[13].

그리고 흥미롭게도 이들의 심플하고 근시안적인 스케줄 정책들의 형태는 아래의 식으로 표현이  수가 있다.

 

 

 and  constants and can be viewed as Lagrange multipliers. For example, consider the following problem studied in [12], [13]:

*Lagrange Multipliers: 출력물 참조

 

 

 :  The set of all stationary scheduling policies,

 : The minimum fraction of time-slots assigned to user (i.e., fairness in time)

 

명백하게 이것은 비선형 최적화 문제를 나타낸다하지만이것을 위의 Q*식에서  = 0  적절한 값의 선택으로 최적화를 쉽게 보여준다.

Q*식의 최적화 법은 각각의 타임슬롯에서 실행되고 확률적인 근사적 알고리즘을 통하여 얻을 수가 있다. [13]

유사하게도, temporal fairness 대신에 우리는 아래와 같은 QoS form 고려할 수가 있다.

 

• Fairness in utility: Each user receives at least a fraction of the aggregate utility value [11], [13].

 

• Minimum data rate requirement: Each user receives a minimum data rate of bps [13].

 

• Proportional fairness: Here, the objective is to achieve a solution that is proportionally fair, i.e., increasing the mean throughput of one user from the optimal level by results in a cumulative percentage decrease by greater than of the mean throughput of other users [14]. It turns out that such a solution is achieved when the optimization problem is to maximize the sum of the logarithms of the expected rates (or the product of the expected rates), i.e.,

식을 통하여 도출되는 각각의 케이스는 Q* 식과 상응하는 동일한 최적화 솔루션을 보여준다. (=0 )

그러므로이런 결과는 우리에게 무선네트워크상에서 시스템 성능의 기회적인 향상으로 이용될  있는 심플하면서 근시안적인 지표의 스케줄링 정책이라고 말해준다.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Stability of Opportunistic Scheduling Schemes

 

이전에 A에서는 Infinite-Backlog Case  시스템으로 가정하여서 QoS/fairness constraints 조건하에 시스템의 Utility 평가하는 문제였다.

이제는, opportunistic scheduling 좀더 발전시켜서시스템의 QoS 제한성과 안정성을 위배하지 않는 범위 내에서 다루는 문제를  것이다.

먼저여기에 확률적인 안정성에서 유용성의 최대화로부터 이동한 문제가 있다 문제는 throughput-optimal scheduling 크게 관심 받아왔다. [15]

 것은 최대화의  가중치의 합의 비율이 바로최적의 처리량을 나타낸다는 스케줄링 법을 보여준다그리고 cellular networks에서 스케줄링 법은 아래의 형식을 따른다.

 : the queue length of user ,

xi : again the data rate transmitted to user

 

위의 스케줄링은 공정한 걸로 간주되며이것은 큐의 길이 정보가 최적화된 스케줄링 법에서 매우 중요한 것이라는 사실을 보여준다.

그래서이를 통하여많은 Idea들은 queue-length-based 처리량최적화와 안정성에 초점을 맞추어 opportunistic scheduling schemes 개발 되어왔다. [16]-[20]

(예를 들어), 논문 [16],[17]에서 아래의 form 따르는 간단한 index 스케줄링 법들은 최적의 처리량을 보여준다.

 

 : 상수,      the head-of-the-line packet delay at queue,      : the data rate of user.

그리고 delay-based 정책지표는 지수함수 가중치로 최적의 처리량을 보여준다.

최적의 처리량 스케줄링 법은 [21] 논문을 참고하길 바란다논문의 저자는 유저들이 시스템에 도달하는 임의의 부하의 양과 전송개시 하는 부하의 양을 모델링 했다그리고 최근에 논문[22], [23]에서의 저자는  traffic 제한성들과  편차로부터의 QoS 사용하는 기술과 안정성 기반의 다른 형태의 스케줄링을 특징짓고 구분하기를 시도하였다 핵심은 finite-Backlog Case에서 delay 제한성의 조건만 가질  QLB( 길이 기반 중요성이라는 결과로 이어진다.  QLB 정책의 네트워크 처리량은 그렇지 않는 스케줄링 법보다  높은 처리량을 보인다.

게다가시스템이 증가하는 경우와 초기에 증가하는  네트워크 처리량 정책안에서주어진 delay조건을 위반하며

 

 

Moreover, for a given delay violation constraint, when the number of users in the system increases, the total network throughput under policy (1) initially increases, and then eventually decreases to zero, but not so under the QLB policy. This should not be entirely surprising since index policies of the form (1) are agnostic to the delays incurred for different users and may not serve users whose queues are building up fast enough to remain within a delay violation probability.

 

 

 

또한 소정의 지연 제약 조건 위반으로 인해 시스템 증가하는 사용자 수가 정책 아래에서의  네트워크 처리량이 먼저 상승한 경우 다음 최종적으로  QLB 정책에 따라 제로가 아니다폼의 인덱스 정책이 다른 사용자 때문에 발생하는 지연에 사로 잡혀 있으면 지연 위반 확률에 체재하기 위하여 충분한 속도로 구축  사용자에게 서비스를 제공하지 않을지도 모르기 때문에 이것은 전혀 놀라운 일이 아니다.

 

또한주어진 지연 위반 제약 조건시스템 증가에 있는 사용자의 수가 정책에 따라 전체 네트워크 처리량이 처음 증가  그리고 결국 그렇게 QLB 정책 하에서 제로로 감소하지만폼의 인덱스 정책이 다른 사용자에 따른 지연 독립적이며해당 대기  지연 시간 위반 확률 내에 남아있는 만큼 빠르게 구축하는 사용자에게 서비스를 제공   없습니다 때문에 이것은 전혀 놀라운 일이  된다.










..작성중







REFERENCES

[1] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks: Shadow prices, proportional fairness and stability,” J. Oper. Res. Soc., vol. 49, pp. 237–252, 1998.

[2] H. Yaiche, R. Mazumdar, and C. Rosenberg, “A game theoretic framework for bandwidth allocation and pricing in broadband networks,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 667–678, Oct. 2000.

[3] S. H. Low and D. E. Lapsley, “Optimization flow control-I: Basic algorithm and convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6, pp. 861–874, Dec. 1999.

[4] S. Kunniyur and R. Srikant, “End-to-end congestion control schemes: Utility functions, random losses and ECN marks,” in Proc. IEEE INFOCOM, Tel-Aviv, Israel, Mar. 2000, pp. 1323–1332.

[5] S. H. Low and R. Srikant, “A mathematical framework for designing a low-loss low-delay Internet,” Netw. Spatial Econom., vol. 4, no. 1, pp. 75–102, Mar. 2004.

[6] R. Srikant, The Mathematics of Internet Congestion Control. Cambridge, MA: Birkhauser, 2004.

[7] M. Chiang, S. H. Low, R. A. Calderbank, and J. C. Doyle, “Layering as optimization decomposition,” Proc. IEEE, Dec. 2006, to be published.

[8] R. Knopp and P. Humblet, “Information capacity and power control in single-cell multiuser communications,” in Proc. ICC, 1995, pp. 331–335.

[9] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and A. Viterbi, “CDMA/HDR: A bandwidth-efficient high-speed wireless data service for nomadic users,” IEEE Commun. Mag., pp. 70–77, Jul. 2000.

[10] S. Borst and P. Whiting, “Dynamic rate control algorithms for HDR throughput optimization,” in Proc. IEEE INFOCOM, Alaska, Apr. 2001, pp. 976–985.

[11] ——, “The use of diversity antennas in high-speed wireless systems: Capacity gains, fairness issues, multi-user scheduling,” Bell Laboratories Technical Memorandum, 2001.

[12] X. Liu, E. K. P. Chong, and N. B. Shroff, “Opportunistic transmission scheduling with resource-sharing constraints in wireless networks,” IEEE J. Sel. Areas Commun., vol. 19, no. 10, pp. 2053–2064, Oct. 2001.

[13] ——, “A framework for opportunistic scheduling in wireless networks,” Comput. Netw., vol. 41, no. 4, pp. 451–474, Mar. 2003.

[14] A. Jalali, R. Padovani, and R. Pankaj, “Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system,” in Proc. IEEE Veh. Technol. Conf., 2000, pp. 1854–1858.

[15] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12, pp. 1936–1948, Dec. 1992.

[16] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R. Vijayakumar, “Providing quality of service over a shared wireless link,” IEEE Commun. Mag., vol. 39, pp. 150–153, Feb. 2001.

[17] S. Shakkottai and A. Stolyar, “Scheduling for multiple flows sharing a time-varying channel: The exponential rule,” Translations of the AMS, 2001, a volume in memory of F. Karpelevich.

[18] ——, “Scheduling of a shared a time-varying channel: The exponential rule stability,” in Proc. INFORMS Appl. Prob. Conf., New York, Jul. 2001.

[19] R. Buche and H. J. Kushner, “Control of mobile communication systems with time-varying channels via stability methods,” IEEE Trans. Autom. Control, vol. 49, no. 11, pp. 1954–1962, Nov. 2004.

[20] A. L. Stolyar, “Maximizing queueing network utility subject to stability: Greedy primal-dual algorithm,” Queueing Syst., vol. 50, no. 4, pp. 401–457, 2005.

[21] S. Borst, “User-level performance of channel-aware scheduling algorithms in wireless data networks,” IEEE/ACM Trans. Netw., vol. 13, no. 3, pp. 636–647, Jun. 2005.

[22] S. Shakkottai, “Effective capacity and QoS for wireless scheduling,” preprint, 2004.

[23] L. Ying, R. Srikant, A. Eryilmaz, and G. Dullerud, “A large deviations analysis of scheduling in wireless networks,” Trans. Inf. Theory, 2005, Earlier versions of the paper appeared in the IEEE CDC 2004, IEEE

CDC 2005 and IEEE ISIT 2006, submitted for publication.

[24] S. Sarkar and L. Tassiulas, “End-to-end bandwidth guarantees through fair local spectrum share in wireless ad-hoc networks,” in Proc. IEEE Conf. Decision and Control, Maui, HI, Dec. 2003, pp. 564–569.

[25] Y. Yi and S. Shakkottai, “Hop-by-hop congestion control over a wireless multi-hop network,” in Proc. IEEE INFOCOM, Hong Kong, Mar. 2004, pp. 2548–2558.

[26] Y. Xue, B. Li, and K. Nahrstedt, “Price-based resource allocation in wireless ad hoc networks,” in Proc. 11th Int. Workshop on Quality of Service, also Lecture Notes in Computer Science. New York: Springer-Verlag, vol. 2707, Monterey, CA, Jun. 2003, pp. 79–96.

[27] L. Chen, S. H. Low, and J. C. Doyle, “Joint congestion control and media access control design for wireless ad hoc networks,” in Proc. IEEE INFOCOM, Miami, FL, Mar. 2005, pp. 2212–2222.

[28] X. Lin and N. B. Shroff, “Joint rate control and scheduling in multihop wireless networks,” in Proc. IEEE Conf. Decision and Control, Paradise Island, Bahamas, Dec. 2004, pp. 1484–1489.

[29] ——, “The impact of imperfect scheduling on cross-layer rate control in multihop wireless networks,” in Proc. INFOCOM, Miami, FL, Mar. 2005, pp. 1804–1814.

[30] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless networks using queue-length-based scheduling and congestion control,” in Proc. IEEE INFOCOM, Miami, FL, Mar. 2005, pp. 1794–1803.

[31] A. Eryilmaz and R. Srikant, “Joint congestion control, routing and MACfor stability and fairness in wireless networks,” IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp. 1514–1524, Aug. 2006.

[32] I. Paschalidis, W. Lai, and D. Starobinski, “Asymptotically optimal transmission policies for low-power wireless sensor networks,” in Proc. IEEE INFOCOM, Miami, FL, Mar. 2005, pp. 2458–2469.

[33] M. J. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic control for heterogeneous networks,” in Proc. IEEE INFOCOM, Miami, FL, Mar. 2005, pp. 1723–1734.

[34] M. Johansson and L. Xiao, “Scheduling, routing and power allocation for fairness in wireless networks,” in Proc. IEEE Veh. Technol. Conf.–Spring, Milan, Italy, May 2004, pp. 1355–1360.

[35] T. Bonald and L. Massoulie, “Impact of fairness on Internet performance,” in Proc. ACM Sigmetrics, Cambridge, MA, Jun. 2001, pp. 82–91.

[36] J. Mo and J.Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, Oct. 2000.

[37] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation and routing for time varying wireless networks,” in Proc. IEEE INFOCOM, San Francisco, CA, Apr. 2003, pp. 745–755.

[38] R. L. Cruz and A. V. Santhanam, “Optimal routing, link scheduling and power control in multi-hop wireless networks,” in Proc. IEEE INFOCOM, San Francisco, CA, Apr. 2003, pp. 702–711.

[39] S. Toumpis and A. J. Goldsmith, “Capacity regions for wireless ad hoc networks,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 736–748, Jul. 2003.

[40] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on cross-layer congestion control in wireless networks,” IEEE/ACM Trans. Netw., vol. 14, no. 2, pp. 302–315, Apr. 2006.

[41] G. Sharma, R. R. Mazumdar, and N. B. Shroff, “Maximum weighted matching with interference constraints,” in Proc. IEEE Int. Workshop Foundations and Algorithms ForWireless Networking, Pisa, Italy,Mar. 2006, pp. 70–74.

[42] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall, 1982. LIN et al.: A TUTORIAL ON CROSS-LAYER OPTIMIZATION IN WIRELESS NETWORKS 1463

[43] L. Xiao, M. Johansson, and S. Boyd, “Simultaneous routing and resource allocation via dual decomposition,” in Proc. 4th Asian Control Conf., Singapore, Sep. 2002, pp. 29–34.

[44] M. Chiang, “Balancing transport and physical layer in multihop wireless networks: Jointly optimal congestion and power control,” IEEE J. Sel. Areas Commun., vol. 23, no. 1, pp. 104–116, Jan. 2005.

[45] ——, “Geometric programming for communication systems,” Foundations and Trends in Communications and Information Theory, vol. 2, no. 1–2, pp. 1–154, Jul. 2005.

[46] M. Arisoylu, T. Javidi, and R. L. Cruz, “End-to-end and MAC-layer fair rate assignment in interference limited wireless access networks,” in Proc. IEEE ICC , Istanbul, Turkey, Jun. 2006, to be published.

[47] X. Wang and K. Kar, “Cross-layer rate control for end-to-end proportional fairness in wireless networks with random access,” in Proc. ACM Mobihoc, Urbana-Champaign, IL, May 2005, pp. 157–168.

[48] J. W. Lee, M. Chiang, and R. A. Calderbank, “Jointly optimal congestion and contention control in wireless ad hoc networks,” IEEE Commun. Lett., vol. 10, no. 3, pp. 216–218, Mar. 2006.

[49] J. Zhang and D. Zheng, “A stochastic primal-dual algorithm for joint flow control andMAC design in multi-hop wireless networks,” in Proc. Conf. Inf. Sci. Syst., Princeton, NJ, Mar. 2006.

[50] L. Bui, A. Eryilmaz, R. Srikant, and X. Wu, “Joint congestion control and distributed scheduling in multihop wireless networks with a nodeexclusive interference model,” in Proc. IEEE INFOCOM, 2006.

[51] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “On the stability of input-queued switches with speed-up,” IEEE/ACM Trans. Netw., vol. 9, no. 1, pp. 104–118, Feb. 2001.

[52] X. Wu and R. Srikant, “Regulated maximal matching: A distributed scheduling algorithm for multi-hop wireless networks with node-exclusive spectrum sharing,” in Proc. IEEE Conf. Decision Control, 2005, pp. 5342–5347.

[53] T. Weller and B. Hajek, “Scheduling non-uniform traffic in a packetswitching system with small propagation delay,” IEEE/ACM Trans. Netw., pp. 813–823, Dec. 1997.

[54] J. Dai and B. Prabhakar, “The throughput of data switches with and without speedup,” in Proc. IEEE INFOCOM, 2000, pp. 556–564.

[55] X. Wu, R. Srikant, and J. R. Perkins, “Queue-length stability of maximal greedy schedules in wireless network,” in Proc. Inf. Theory Appl. Inaugural Workshop, Feb. 2006, Univ. California, San Diego. 

[56] P. Chaporkar, K. Kar, and S. Sarkar, “Achieving queue length stability through maximal scheduling in wireless networks,” in Proc. Inf. Theory Appl. Inaugural Workshop, Feb. 2006, Univ. California,

San Diego.

[57] ——, “Throughput guarantees in maximal scheduling in wireless networks,” in Proc. 43rd Annu. Allerton Conf. Commun., Control, Comput., Monticello, IL, Sep. 2005.

[58] X. Lin and S. Rasool, “Constant-time distributed scheduling policies for ad hoc wireless networks,” IEEE CDC 2006. [Online]. Available: http://min.ecn.purdue.edu/~linx/papers.html, submitted for publication

[59] X. Lin, N. Shroff, and R. Srikant, “On the connection-level stability of congestion-controlled communication networks,” IEEE Trans. Inf. Theory, 2006, submitted for publication.

[60] P. R. Kumar and T. I. Seidman, “Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems,” IEEE Trans. Autom. Control, pp. 289–298, Mar. 1990.

[61] A. Rybko and A. Stolyar, “Ergodicity of stochastic processes describing the operation of open queueing networks,” Problems of Information Transmission, vol. 28, pp. 199–220, 1992, translated from

Problemy Peredachi Informatsii, vol. 28, no. 3, pp. 3–26, 1992.

[62] A. Eryilmaz, E. Modiano, and A. Ozdaglar, “Distributed control for throughput-optimality and fairness in wireless networks,” preprint, 2006.

[63] Y. Yi, G. de Veciana, and S. Shakkottai, “Learning contention patterns and adapting to load/topology changes in a MAC scheduling algorithm,” preprint, 2006.

[64] J.-W. Lee, R. R. Mazumdar, and N. B. Shroff, “Downlink power allocation for multi-class CDMA wireless networks,” in Proc. IEEE INFOCOM, 2002, vol. 3, pp. 1480–1489.

[65] ——, “Opportunistic power scheduling for multi-server wireless systems with minimum performance constraints,” in Proc. IEEE INFOCOM, Hong Kong, China, 2004, pp. 1067–1077.

[66] M. Chiang, S. Zhang, and P. Hande, “Distributed rate allocation for inelastic flows: Optimization frameworks, optimality conditions, and optimal algorithms,” in Proc. IEEE INFOCOM,Miami, FL, Mar. 2005,

pp. 2679–2690.

'N.&C. > Optimization' 카테고리의 다른 글

[Lagrangian] 라그랑지언  (0) 2013.07.09
LMS 알고리즘  (1) 2013.06.10

** 본 내용은 위키 피디아의 내용을 토대로 정리하였습니다.** 

 출처 : http://ko.wikipedia.org/wiki/%EB%9D%BC%EA%B7%B8%EB%9E%91%EC%A7%80%EC%95%88


Lagrangian를 이해하기 위해서 그것이 대표적으로 쓰인 라그랑주 역학을 알면 쉽게 접근이 가능하다.

예를들어, 라그랑주 역학에서는 라그랑지언(= 시스템의 동역학을 나태내는 함수를 말한다) 함수를 구하여 라그랑주 방정식 (=오일러-라그랑주 방정식) 넣어서 풀면 물체의 궤적을 알수있는 식을 구할수가 있다.

이는 라그랑지언을 어디에 사용하는가에 따라서 다양한 적용이 가능하는 뜻이다. 

그러므로, 라그랑지안은 하나의 테크닉이며, 수학적 기법이라고 할수가 있는 것이다.


[경제학에서의 라그랑지안]  -- 출처 : http://economia.tistory.com/2


라그랑주 역학(Lagrangian mechanics)은 조제프 루이 라그랑주가 고전역학을 새롭게 공식화하여 그의 논문 《해석 역학》을 통해 1788년에 발표한 이론이다. 라그랑주 역학에서는 라그랑지언을 구해 라그랑주 방정식에 넣어 풀어냄으로써 물체의 궤적을 구할 수 있다.


                                                                                                                                                                         

**라그랑주 방정식**

라그랑주 역학의 운동방정식을 라그랑주 방정식(Lagrange's equation)이라고 한다. 자세한 형태는 아래와 같다.

{d \over dt}  {\partial T \over \partial \dot{q}_\sigma}  - {\partial T \over \partial q_\sigma } = Q_\sigma \qquad \sigma = 1, \; \cdots , \; 3N-k

보존계의 경우, 라그랑주 방정식은 다음과 같은 형태를 가지고, 이러한 방정식을 오일러-라그랑주 방정식(Euler-Lagrange equation)이라고 한다.

 {d \over dt} {\partial \mathcal{L} \over \partial \dot{q_\sigma} } - {\partial \mathcal{L} \over \partial q_\sigma} = 0 , \qquad \sigma = 1, \;\cdots ,\;3N-k

여기서,

q : 일반화 좌표
σ : 일반화 좌표를 나타내는 지표
N : 입자의 수
k : 홀로노믹 구속의 수
t : 시간
ℒ : 라그랑지언, T-U 로 정의
T : 운동 에너지
U : 퍼텐셜

이다. 보통, 오일러-라그랑주 방정식을 대부분의 라그랑주 역학에서 등장하는 문제를 푸는 데 사용하기 때문에 간단히 오일러-라그랑주 방정식을 라그랑주 방정식이라 부르는 경우가 많다

                                                                                                                                                                         


라그랑주 역학에서, 라그랑지언(Lagrangian)이란 의 동역학을 나타내는 함수다. 라그랑주 역학에서는 계의 상태를 일반화 좌표와 일반화 속도로 나타내므로, 라그랑지언은 일반화 좌표와 일반화 속도의 함수다. 조제프루이 라그랑주가 도입하였다. 기호는 대개 L이다.

라그랑주 역학과 뉴턴 역학은 서로 동등하지만, 라그랑주 역학에서는 직교좌표계 뿐만 아니라 임의의 좌표계 (구면좌표계원통좌표계 등)를 사용할 수 있어 편리하다.


*(系, system)는 구성 요소들을 체계적으로 통일한 조직을 일컫는다. 다시 말해, 일정한 구성 요소들을 포함하고 있고 그 구성 요소들 사이의 상호 관계가 분명히 정의되어 있어야 한다. 계의 정의는 이론에 따라 조금씩 달라질 수 있다.

*동역학(動力學, dynamics)은 물리학에서 고전역학의 한 분야로 이 물체의 운동에 미치는 영향을 다룬다. 즉 이는 운동학과 정역학의 결합으로 볼 수 있다.

 


'고전역학의 라그랑지언과 전미분을 포함하는 라그랑지언과의 차이점을 설명' -> 오일렁 라그랑지언을 얻음.


어떤 운동방정식을 주는 라그랑지언은 유일하지 않다. 예를 들어, 고전역학의 라그랑지언 L_A(q,\; \dot{q},\; t) = T(q,\; \dot{q},\; t) - V(q,\; t)와 다음과 같은 좌표와 시간만의 임의의 함수 f(q,\; t)의 시간에 대한 전미분을 포함하는 라그랑지언

{\mathcal L}_B(q,\; \dot{q},\; t) = {\mathcal L}_A(q,\; \dot{q},\; t) + {d \over dt} f(q, 
\; t)

을 비교해보자. 두 이들이 주는 작용의 차이는

\begin{align}
S_B & =  \int_{t_1}^{t_2} {L_B(q,\; \dot{q},\; t)} \, dt \\
& =  \int_{t_1}^{t_2} {L_A(q,\; \dot{q},\; t)} \, dt + \int_{t_1}^{t_2} {{d \over dt} f(q, 
\; t)} \, dt 
\\ & = S_A + \left. f(q,\; t) \right|_{t=t_2} - \left. f(q,\; t)\right|_{t=t_1}
\end{align}

이므로 \left. f(q,\; t) \right|_{t=t_2} - \left. f(q,\; t)\right|_{t=t_1}만큼 차이가 난다. 하지만 이는 상수이므로 여기에 변분을 취하면

\delta S_B = \delta S_A + \delta \left[ \left. f(q,\; t) \right|_{t=t_2} - \left. f(q,\; t)\right|_{t=t_1} \right] = \delta S_A

가 되어 최종적으로 다음과 같은 오일러-라그랑주 방정식을 얻게 되며 두 라그랑지언에 의해 얻게 되는 운동방정식은 같게 된다.

\frac{d}{d t}\frac{\partial L}{\partial\dot q} = \frac{\partial L}{\partial q}

일반적으로, 라그랑지언이 어떤 임의의 함수의 전미분만큼 달라도 같은 오일러-라그랑주 방정식을 얻는다.



오일러 - 라그랑지 방정식의 유도과정은 아래와 같다.






'N.&C. > Optimization' 카테고리의 다른 글

A Tutorial on Cross-Layer Optimization in Wireless Networks  (0) 2013.07.23
LMS 알고리즘  (1) 2013.06.10

출처 : 네이버 지식인.

 


 LMS(Least Mean Square)

 

이 방법은 많은 데이터가 주어졌을때 그 데이터들이 이루는 그래프를

 

산출해내기 위하여 사용하는 방법들 중 하나입니다.

 

즉 2차원 데이터들이 다음과 같이 주어졌다고 하면

 

(1,2) (2,5) (3,8) (4,10) (5,14)

 

이들이 이루는 1차원 직선을 찾고 싶다면 다음과 같이 가정합니다.

 

y=ax

 

이 그래프에 위의 5개의 데이터를 대입하여 a를 찾아내고

 

그 오차가 가장 적은 a를 선택하는 방법이 LMS입니다.,


이제, 예를 들어 보겠습니다.




출처: WiKi 


위 그래프는 위키 백과에서 회귀 분석을 설명할때 사용된 그림입니다.

파란색의 점들이 각각의 샘플들이라면, 이들의 경향성을 따라서 직선을 그은것이 바로 위에서 설명한 LMS 수식으로 표현것입니다. 즉, 아주 간단한 근사화 방법으로써 실제로 많이 쓰이지만 그렇게 정확도가 높지는 않습니다.


이러한 데이터 혹은 샘플 혹은 어떠한 분포도를 하나의 수식으로 표현하기 위해서, 이를 모델화 한다고 합니다. 모델은 우리가 원하는 물리적인 현상을 잘 반영해야 합니다. 하지만 분명 오차가 발생하기 때문에, 이를 최소자승법을 통하여 원하는 결과값이 나오도록 하는 오류를 최소화 하는 변수값을 알아내는것이 핵심입니다. 

이를 식으로 다시 이야기 해보겠습니다.

참조 : The Method of Least Squares of Steven J. Miller∗


앞서 보여드린 그림에서 각 점들은 x,y축의 좌표값을 가진 데이터라고 가정한다면, (x1,y1) ,....(xn,yn)으로 표현이 가능합니다. 그리고 이 값들의 분포를 나타내기 위한 직선의 방정식으로 y=ax + b 을 사용할수 있습니다.

이때의 a,b는 x,y의 경향성을 가장 잘 표현할수있는 그래서 오류를 최소화하는 어떤 값이라 할수있습니다.


그리고 이를 효과적으로 계산하기위해서는 몇가지 방법들이 존재합니다.

http://darkpgmr.tistory.com/56

위의 블로그에 가사면 좀더 자세히 계산법, 적용의 예, 한계 까지 모두 포스팅이 되어있으므로 생략하겠습니다.



 




'N.&C. > Optimization' 카테고리의 다른 글

A Tutorial on Cross-Layer Optimization in Wireless Networks  (0) 2013.07.23
[Lagrangian] 라그랑지언  (0) 2013.07.09

+ Recent posts