논문심사에 대한 유용한 정보가 웹상에 많이 산재해 있어서 해당 내용들을 참고하여 다시 정리해보았습니다.


먼저, SCI 논문이란 무엇일까요?

SCI 약자는 Science Citation Index의 줄임말이며, 개별적으로 모든 논문들을 분류 및 평가하는 것이 불가능하기 때문에 네임드 저널을 분류하는 기준으로 사용되는 단어입니다. 또한, SCI 논문은 주로 1) 피인용수와 다양한 저널 그리고 공신력 있는 저널에서 해당 저널이 많이 인용되고 있는가를 지표로 수치화(임팩트 팩터, IF)해 높은 점수를 가진 저널들을 일컫는 말입니다. 하지만 임팩트 팩터는 저널의 질을 나타내는 객관적인 지표로서 활용될 수는 있지만, 절대적인 값은 아니며 분야가 다를 경우에는 저널의 수준을 비교하는 데 있어서 활용되기에는 문제점이 있기에 참고만 해야합니다.


그럼 이러한 SCI 논문을 작성하여 투고했다면, 아래의 논문 심사절차를 거치게 됩니다.


심사진행은 논문의 편집위원장 (Editor-in-Chief: EIC)과 이를 도와주는 보조 편집자 (Associate Editors: AE) 들이 리뷰를 진행합니다. 즉, AE들이 리뷰를 해주면 이를 토대로 EIC가 최종적인 논문의 게재 승낙을 검토하고 이를 투고자에게 알려주는 Decision Letter 를 보냅니다. 투고부터 최종 게재 승인까지의 단계를 적어보면 총 7가지로 나눠볼 수 있습니다.


1. Awaiting admin checklist (or In EIC office)


논문을 제출하면, 시스템 담당자(행정원)에게 논문이 제대로 전달되었는지 점검하는 단계입니다. 시스템 담당자는 ADM(or admin)이라는 이름과 함께 나타납니다. 


2. Awaiting AE Assignment (or Assigned to AE)


EIC가 투고된 논문을 확인하여 여러명의 AE 중 이를 담당할 적절한 AE를 선정하는 단계입니다. 대부분 AE가 한번 정해지면 다음번 재투고를 진행하더라도 동일한 AE가 이를 담당하게 됩니다. 저의 경우는 그렇지 않은 케이스도 겪었습니다. 그래서 새로운 AE에게 지난 AE와 주고받은 내용을 메일로 첨부하여 알려주기도 하였습니다. (항상 매끄럽진 않습니다.)


3. Awaiting Reviewer Selection (or AE invites reviewers)


AE가 이제 리뷰어를 선정하는 단계입니다. 보통 리뷰어는 해당 논문지에 소속된 Society 중에서 논문을 제출한 경험이 있는 저자들을 대상으로 합니다. 그리고 투고자가 reference 로 첨부한 논문들중에서의 저자들이 리뷰어로 유력하게 고려됩니다. 이는 해당 연구를 잘 알고 충분히 리뷰할 실력이 있다고 판단이 되기 때문입니다.


4. Awaiting Reviewer Assignment or AE assigns reviewers)


AE가 리뷰어 후보자들에게 논문 초록정도를 볼수 있게 해서 리뷰를 진행할 것인지 의견을 이메일로 보내서 그 응답을 기다리는 단계입니다. 보통 2~3명, 많으면 4명까지 리뷰어를 선정하게 됩니다. 


5. Awaiting Reviewer Scores (or Under review)


AE가 초청한 리뷰어가 이제 논문을 검토하여 점수를 매기고 리뷰어 코멘트와 에디터 코멘트를 리뷰 결과로 작성하는 단계입니다. 대게 리뷰어가 논문 리뷰를 하겠다고 승낙한 후 1달정도의 검토기간을 줍니다. 하지만..이단계나 리뷰어를 선정하는 단계에서 딜레이를 겪기 때문에 1년이상, 저널에 따라서 몇년 정도 리뷰기간으로 소요 될 수도 있습니다;;;..거의 잊혀질때 연락옵니다.


6. Awaiting AE recommendation (or Awaiting AE decision)


이제 2명 이상의 리뷰어로부터 전해받은 논문의 검토결과를 바탕으로 AE는 EIC에게 권고의견을 보냅니다. EIC가 최종결정권자이기 때문입니다.


7. Awaiting EIC decision


최종적으로 EIC는 AE의 권고안과 리뷰어들의 검토결과를 바탕으로 논문의 게재 여부를 결정하게 됩니다. 논문을 제출한 시스템에서 이단계라고 나타나면 대개 1~2주일안에 그 결과를 받는다고 생각하면 됩니다. 결과는 보통 (합격) Accept, Revision-(대폭수정필요) major or (적은수정필요) minor, (격려) Reject and Resubmit, (불합격) Reject 으로 통보됩니다.



출처: http://woof.tistory.com/1273



이번에 미국 학회 출장으로 인해서 렌트카를 사용할 일이 있어서 정리합니다.


1. 해외에서 운전하려면 어떻게 해야하나?

 1) 해외에서 운전면허를 취득한다 -> 당연하므로 패스!

 2) 한국에서 해외운전면허증을 취득한다 -> 어떻게?

    발급기관 : 가까운 면허시험장 또는 경찰서

    

    소요시간 : 신청서 접수후 30분 이내

    유효기간 : 1년 

    필요서류 : 여권, 운전면허증, 사진(3 x 4 사이즈 or  여권사진 사이즈), 신청료(7000원 또는 8500원)

    사용가능한 나라 : 제네바 협약국, 비엔나 협약국 등등 

     (즉, 유럽모든나라와 독일, 미국,하와이,일본,호주 등이 한국이 많이 찾는 휴양지는 대부분 가능)


2. 어떤 렌트카를 사용할까? 

  1) 해외보험을 가입해야하기때문에 확실한 곳을 사용하세요

     : 메이저급 회시가 믿을만 합니다. - 허츠, 에이비스, 식스트, 유럽카, 알라모 등..

  2) 정식 렌트카업체를 통하여 차량비용+보험비+부가세+영업소비용 등등을 한번에 결제하시면 추가부담금이 안듭니다.

  3) 개인적으로 Hertz를 추천합니다. 

    관련 추천 정보는 http://www.leeha.net/

    허츠공식홈페이지는 https://www.hertz.co.kr/rentacar/reservation/

    허츠 골드회원 무료가입법 http://www.kimchi39.com/entry/hertz-gold    


3. 어떻게 할인을 받을까?

   허츠의 경우 "할인행사" 메뉴에서 해당되는 나라나 기종에 대해서 할인행사를 많이 진행합니다.

   또한 각 나라별 기본정책과 혜택도 다릅니다. 본인이 여행가실때 꼭 알아보세요.

   예를 들어, 현재 2014년 8월 이벤트는 아래와 같습니다.  


      대한 항공: 스카이패스 마일리지 최대 4배 적립

      유효기간: ~ 2014년 9월 30일까지 차량 픽업 시


      아시아나 항공: 아시아나 클럽 마일리지 최대 4배 적립

      유효기간: ~ 2014년 9월 30일까지 차량 픽업 시


      미국: 15% 추가할인

      유효기간: ~ 2014년 8월 31일까지


      미국 & 캐나다: 차량 한 단계 무료승급

      유효기간: ~ 2014년 8월 31일까지

   

     등등.. 나라마다 상이한 할인행사가 있습니다. 참고로 미국의 경험 가족운전자 및 회사동료에 한해서 운전자추가가 무료

     입니다.  


     자동차보험에 대한 정보:  http://kin.naver.com/open100/detail.nhn?d1id=9&dirId=9020201&docId=826798&qb=66+46rWtIOugjO2KuOy5tCDrs7Ttl5jsmqnslrQ=&enc=utf8§ion=kin&rank=1&search_sort=0&spq=0&pid=R9X4vdpySERssaI%2BntKssssssto-390995&sid=U9uEwHJvLDEAACx7Edc

     운전자추가에 대한 자세한정보 : http://kin.naver.com/qna/detail.nhn?d1id=9&dirId=9020201&docId=76657274&qb=7ZW07Jm466CM7Yq4IOy2lOqwgOyatOyghOyekA==&enc=utf8§ion=kin&rank=1&search_sort=0&spq=0&pid=R9X4UlpySp4ssvvGnSdsssssstG-282345&sid=U9uEwHJvLDEAACx7Edc

     허츠 렌트예약의 예시 : http://www.kimchi39.com/m/post/1202


4. 해외 운전시 주의사항

   기본적인 해외운전시 주의사항: http://www.kimchi39.com/entry/rent-a-car-to-know

   해외 운전자 교육사이트 : http://www.sfkorean.com/jsp/information/info_6024_dmv_exam_sign.jsp

   미국에서 운전주의사항: http://www.leeha.net/bin/minihome/neo_main3.htm?subon=1&seq=1973&subkey=100779&cseq=100781&menuname=%2Fbin%2Fminihome%2Fcontents_i.htm


* 참고로 미국에서의 해외추가운전자 발생시, 최초 렌트시 차량인도할때 추가를 하면 되며 추가요금은 없다.

  하지만 나라마다 상이하며, 보통 하루당 10불 정도의 추가요금이 발생한다고 생각하면 된다. 

  (어떤 나라는 배우자는 추가시 무료)






출처(cite) : http://isites.harvard.edu/icb/icb.do?keyword=k16940&state=popup&topicid=icb.topic571422&view=view.do&viewParam_name=indepth.html&viewParam_popupFromPageContentId=icb.pagecontent502214


Radio Wave Properties


[L | t++ | ★★★★] | keywords: production and detection of electromagnetic waves, dipole antenna radiation pattern, polarization of radio waves, loop antennas, E and B-field standing waves


What it shows:   The following is a sequence of experiments that can accompany a standard lecture on electromagnetic waves.  The entire sequence is quite long and you may not want to do it all in one lecture.

(1)  The voltage variation along the length of a dipole transmitting antenna can be made evident.  The intensity variation of a fluorescent light bulb, held near the antenna, shows the voltage to be maximum at the ends and minimum in the middle of the dipole.

(2)  The radio waves that radiate from the transmitting antenna are detected by a hand-held dipole receiving antenna.  Voltage and current standing waves in the receiving antenna are made evident with incandescent light bulbs (see Comments below).

(3)  The receiving antenna can be used to explore the dipole radiation pattern of the transmitting antenna.  In particular, you can show that there is no radiation along the axis of the dipole and maximum radiation perpendicular to the axis.

(4)  Polarization of the electromagnetic waves; the light bulb brightness goes from a maximum to zero as the antenna is rotated from parallelism to perpendicularity with the E-field.  A B-field loop antenna can also be used to show that the magnetic field is perpendicular to the electric field and, hence, also polarized.

(5)  Selective absorption of electromagnetic waves by a grid of copper rods, and the resulting rotation of polarization of the transmitted waves (if you like, it's Malus' Law with radio waves).

(6)  Standing waves formed by the superposition of incident and reflected waves.  By using two receiving antennas, one sensitive to the E-field and the other sensitive to the B-field, one can also demonstrate (in the case of a standing wave) that the maxima of the two fields are 180˚ out of phase with each other.

(7)  Resonance; the length of the receiving dipole antenna can be changed to "de-tune" it, and be less effective (as observed by the dimness of the light bulb).

(8)  The antenna can also be used to demonstrate the dramatic change in wavelength of the electromagnetic wave as it travels from air into water.  Submerged under water, the light bulb of the receiving antenna no longer lights.  In contrast, the light bulb of a second (much shorter) dipole antenna readily lights.  The ratio of the two antenna dipole lengths (in and out of water) is proportional to the index of refraction and the dielectric constant of water.

(9)  By coupling a long transmission line (a.k.a. Lecher line) to the RF transmitter, one can show the effects on electric standing waves along the line by either (a) shorting the end of the line, (b) having an open line, or (c) terminating the line.






How it works:  

(1)  A 300 MHz RF signal is fed to a λ/2 dipole antenna (see appendix i for details of the antenna design).  Hold one end of a 12-inch long, 8-Watt, fluorescent lamp with your hand and touch the other end of the lamp to the antenna.  Once lit, the lamp can be slid along the length of the antenna to explore the variation in voltage.  The lamp will be very bright at the two ends of the dipole, where the voltage is maximum, and very dim in the middle where the voltage is minimum — there is a voltage standing wave along the length of the transmitting antenna at resonance.

    



(2)  The radio wave receiver is astonishingly simple —  48-cm-long copper pipe serves as a λ/2 dipole receiving antenna.  Simply hold it in the middle with one hand.  While standing a couple of feet from the transmitting antenna, hold a 6-inch long, 4-Watt, fluorescent lamp in the other hand and touch either end of the copper pipe with it.  It will light up!  (The voltage standing wave set up in the copper pipe is of sufficient voltage to light the lamp.)  Slide the lamp along the length on the receiving antenna to show a voltage node in the center (the lamp goes out) and anti-nodes at the two ends — there is a voltage standing wave along the length of the receiving antenna at resonance.

    

Now try the 48-cm-long copper pipe antenna which has been split into six equal-length segments.  The segments are mechanically supported by a plastic rod and electrically connected to each other via miniature incandescent lamps.  Hold the pipe a couple of feet from the transmitting antenna and notice the intensity variation in the lamps — brightest in the middle of the dipole, tapering off to zero at the ends.  The brightness of the lamp is a qualitative indicator of the current passing through it and thus one can see, at a glance, the current variation in the receiving dipole antenna  — there is a current standing wave along the length of the receiving antenna at resonance, and it is 90˚ out of phase with the voltage standing wave.

  


Having demonstrated that the current is maximum in the middle of the dipole, you can now switch to a copper pipe antenna that is split into two equal-length segments, with one incandescent light bulb connecting the two.  Since all the power is being dissipated in a single bulb, it will be significantly brighter than the seven bulbs in the six-segment antenna.  Use this antenna as your detector for demonstrations (3) through (6).



(5)  The "polarizing filter" consists of five copper rods supported by a 1-meter square wooden frame.  The spacing between the rods is about (0.4)λ.  This "filter" is placed between the transmitting and receiving antennas.  When the rods are parallel to the transmitting antenna (i.e., E-field), the field does work in moving electrons along the length of the rods and reduces the energy in the field.  This is depicted in the figure.  Consequently, if the receiving antenna is also parallel to the rods,  very little energy reaches it and the bulb does not light.  When the rods are perpendicular to the transmitting antenna, the light bulb on the receiving antenna shows no appreciable diminuation in power received.

   

The filter can be rotated so that it is 45˚ w.r.t. the transmitting antenna.  The receiving antenna light bulb will dim, but stay lit.  If the receiving antenna is now also rotated 45˚, so that it is perpendicular to the rods, the intensity of the light increases again, notwithstanding that the receiving antenna is now tilted 45˚ w.r.t. the transmitting antenna.  This is a nice analog of rotating the plane of polarization of light with polarizing filters.

      



(6)  Allow the electromagnetic waves from the transmitting antenna to reflect off the blackboard (which has a steel backing) or some other convenient metal surface — there will be interference between the incident and reflected wave resulting in a standing wave.  By holding the receiving antenna near the reflecting surface (where the intensities of the incident and reflected wave are approximately equal), the maxima and minima of the standing wave pattern are easily shown.  The distance between maxima is λ/2 = 50 cm.

The demonstration of standing waves can be made even more interesting by employing a second receiving antenna which responds to the intensity of the magnetic field.  This antenna is a resonant loop antenna.  First, the polarization of the B-field can be demonstrated — the bulb brightness is maximum when the loop normal is parallel to B; it is zero when the normal is either along E or the propagation direction.  It's most dramatic if the electric and magnetic detectors are used simultaneously.  When this double probe is moved through the standing wave pattern in front of the reflecting surface, the brightness of the electric and magnetic detector bulbs peak at interleaving positions.  This helps to impress on the student that there are really two different fields here.  Peter Heller (Brandeis University) first demonstrated this to us at a NECUSE meeting (April 1994) and some of the insights he shared with us at the time are included in Appendix iii below.




The B-field antenna consists of a 2.75" diameter single loop formed from copper tubing.  Two small copper tabs form the capacitor.  It's resonance frequency is fine-tuned by inserting a dielectric (plastic ruler) between the capacitor plates.

   




(7)  Resonance:   the length of the receiving dipole antenna can be changed to "de-tune" it, and be less effective.  To that end, use the standard VHF "rabbit ears" antenna used on televisions.  When the telescoping sections are pulled out, the length of the antenna is no longer a resonant a λ/2 dipole, and the light bulb will be noticeably dimmer.



(8)  The wavelength change in water can be demonstrated by using the dipole antenna inside a tank of distilled water.  Submerged under water, the light bulb of the receiving antenna no longer lights.  In contrast, the light bulb of a much shorter (9 cm long) dipole antenna readily lights under water, but not in the air.  Since both antennas are adjusted to be λ/2, the ratio of the two antenna dipole lengths (in and out of water) is proportional to the index of refraction and the dielectric constant of water.  It turns out to be equal to about 5 at this frequency.



    



Setting it up:  An HP model 3200B VHF Oscillator (10-500 MHz) and EIN model 5100-L NMR RF Broadband Power Amplifier provide the RF signal.  They live together on a short relay rack which can be wheeled into place in front of the lecture bench and will not obscure the view of the blackboard. The 5-meter long BNC coax cable connects the power amplifier to the dipole transmitting antenna. The long feed allows for quite a bit of flexibility in the antenna placement. The 100-Watt power amplifier has no gain control and thus the output is set by the amplitude of the HP oscillator: the minimum amplitude setting is sufficient for this demonstration.


Comments:  The demonstrations provide a particularly striking accompaniment to the discussion of electromagnetic waves.  A light bulb is pedagogically much more convincing as a detector than a crystal diode.  After all, an electric field is "the thing that pushes electricity."  That it pushes electricity through the bulb filament strongly enough to light that filament is striking to the onlooker.  This is especially true in that no "return circuit" is present.  (If you like, the "return" is via the "displacement current.")

Safety:   The most common criteria for human exposure to electromagnetic fields are those developed by the Institute of Electrical & Electronics Engineers (IEEE) and the National Council of Radiation Protection & Measurements (NCRP).  The limit is expressed in terms of equivalent plane-wave power density and is equal to 30 W/m2.  The International Commission on Non-Ionizing Radiation Protection (ICNIRP) limit is set at 22.5 W/m2.  Exposure from the dipole transmitting antenna is well below these limits.

Appendix i:  With a wavelength of 1 meter, 300 MHz is right on the border between VHF and UHF.  The actual length of a λ/2 dipole antenna is not exactly equal to the half-wave in space, but needs to be corrected for the thickness of the conductor in relation to the wavelength.  Since the transmitting antenna is fabricated from 1/2-inch diameter aluminum rod, it is 0.48 m long.  The recipe for the correction in length is given in The Radio Amateur's Handbook, 43rd edition (1966), page 365.  An antenna with opens ends, of which the half-wave type is an example, is inherently a balanced radiator.  However, since the antenna is fed at the center through a coaxial line, this balance is upset because one side of the radiator is connected to the shield while the other is connected to the inner conductor.  On the side connected to the shield, a current can flow down over the outside of the coaxial line, and the fields thus set up cannot be canceled by the fields from the inner conductor because the fields inside the line cannot escape through the shielding afforded by the outer conductor.  Hence these "antenna" currents flowing on the outside of the line will be responsible for unbalanced radiation.  This kind of line radiation can be prevented by a device known as a balun (a contraction for "balanced to unbalanced").  Our antenna employs one type of balun called a bazooka, which uses a sleeve over the transmission line to form, with the outside of the outer line conductor, a shorted quarter-wave line section (see pages 387-388).  The impedance looking into the open end of such a section is very high, so that the end of the outer conductor of the coaxial line is effectively insulated from the part of the line below the sleeve.  The length is an electrical quarter wave, and may be physically shorter if the insulation between the sleeve and the line is other than air (which it is in our case).



Appendix ii:  The miniature incandescent lamps are type 6833, rated at 5.0V and 60mA (0.3W).  They are sometimes referred to as "grain of wheat" bulbs and have "pigtail" leads.  For the single-lamp dipole antenna we use a type 47 lamp, rated at 6.3V and 150mA (1W).  It has a bayonet base.  If you wish to increase the distance between the receiving and transmitting antennas to more than 2 meters, a more sensitive lamp is needed — use a type 1850 lamp, rated at 5.0V and 90mA (0.5W).  If using this lamp, don't come too close to the transmitting antenna as the lamp will burn out!

Appendix iii:  The B-field antenna consists of a 2.75" diameter single loop formed from 1/8" OD copper tubing.  Its inductance was calculated to be 0.14μH [F. Grover, Inductance Calculations, (D. Van Nostrand, 1946) in Cabot QC 638 G78 and F.E. Terman, Radio Engineer's Handbook, (McGraw-Hill, 1950) Cabot TK 6550.T4 are two excellent references for this].   Two small copper tabs form the capacitor.  They measure 2 cm square and are separated by 3 to 4 mm.  The capacitance is approximately 2 pF.  A thin plastic ruler between the plates serves as the dielectric — its position can be changed to adjust the capacitance.  In this way the resonance frequency can be fine-tuned to match the transmitted signal.  A type 338 (2.7V, 60mA) miniature incandescent lamb gives a visual indication of the field strength. The adjustment of the spacing between the lamp's two lead contact points provides the needed impedance matching.  With the impedance properly matched, the bulb brilliance for this "magnetic antenna" is equal to that of the λ/2 dipole antenna.

Peter Heller's thoughts on this last statement:  That this is true, despite the fact that the magnetic "loop" is only a tiny fraction of a wavelength in linear extent, beautifully demonstrates the truth of the "antenna theorem":  the absorption cross section of a resonant loop depends on its directivity pattern, and is of the order of the square of the wavelength, rather than the square of the linear dimensions, as one might have thought.  At the level of an intermediate course in electromagnetism, the fact that the resonant loop has an effective cross section many times as great (e.g. a hundred) as the square of its size, can be discussed by showing how the energy (Poynting) flux is "funneled" into the loop.  This is due to the way the incident field combines with that of the loop itself; the point here is that the loop, although it is functioning as a "receiving antenna," is also producing its own radiation field.  This field is superimposed on the original incident (plane-wave) field.  The Poynting vector field corresponding to the total field has the property that its "field lines" in a region of area of the order of the squared wavelength ultimately terminate (i.e. "flow to") the receiving loop, even though the latter is physically very much smaller than the wavelength.  He published this in the Am. J. Phys. 65(1), pp 22-25, 1997
















http://m.ktword.co.kr/index.php




【   정보통신기술용어해설   】

`과학기술분야의 단편지식들을 정리,체계화시키고 있는 개인연구실입니다`




위의 형태로 간편하게 원하는 개념을 검색하여 정보를 취득할수있는 사이트입니다.



http://cafe.naver.com/circuitsmanual





카페 대문에서 보시듯이 상업성이 전혀 없습니다~ 순수하게 지식을 추구하는 카페이지~ 지식의 교류가 있는곳이라 생각됩니다.

"키트"님이 항상 활동하시고요~ 부족한 부분을 성심성의껏 질문하신다면 무조건 답해주십니다 ^^ 

하지만 그전에 혼자서 노력을 해보고 질문을 하셔야겠죠?.. 

무턱대도 소스해석해주세요~ 밑도 끝도 없는 질문은 어디에서나 민폐입니다~ㅎ

아무튼~ 이곳도 추천해드립니다~!

http://cafe.naver.com/carroty



AVR을 하시면서 이곳을 모른다면 말이 안되죠..^^;

초보에서 대단한 전문가님까지 많이 계신곳입니다~


지금 AVR을 시작하셨다면 이곳을 추천해드려요~

+ Recent posts